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ABSTRACT 
The probability of fixation of a favorable mutation is reduced if selection at other loci  causes inherited 

variation  in  fitness. A general method  for calculating the fixation probability of an allele that can 
find itself  in a variety  of genetic backgrounds is applied to find the effect of substitutions, fluctuating 
polymorphisms, and deleterious mutations in a large population. With loose linkage, r, the effects 
depend  on the additive genetic variance in relative  fitness, var (W) , and act by reducing effective 
population size by ( N/  Ne)  = 1 + var ( W )  / 272. However,  tightly linked loci  can  have a substantial effect 
not predictable from Ne. Linked deleterious mutations reduce  the fixation probabililty of  weakly favored 
alleles by exp ( -2U/ R) , where U is the total mutation rate and R is the map length in  Morgans. 
Substitutions can cause a greater reduction: an allele with advantage s < sCrit = ( n2/6) log, (S/ 
s) [ var ( W) / R] is  very unlikely to be fixed. ( S is the advantage of the substitution impeding fixation.) 
Fluctuating polymorphis t ma y ( n )  linked loci can also  have a substantial effect, reducing fixation 
probability by exp [ J 2Kn var ( W )  / R] [ K = -1 / E (  ( u - ii ) */ uu)  depending  on the frequencies 
( u , u )  at  the selected polymorphisms]. Hitchhiking due to all three kinds of selection may substantially 
impede adaptation that  depends on weakly favored  alleles. 

A major objection to Darwin’s theory of evolution 
was that  natural selection, acting on slight varia- 

tions, would act too slowly to  account  for  the diverse 
and delicate adaptations  that we see. This problem was 
made particularly acute by  Kelvin’s argument  that be- 
cause the  earth is not yet cool, it must be young 
(BOWLER 1989, p. 206).  The discovery  of  radioactivity 
gave both  a mechanism for warming an old planet  and 
direct estimates of its age.  It is  now clear from the fossil 
record  that in the  long  term, most species evolve much 
more slowly than we know to  be possible from observed 
responses to  natural and artificial selection. However, 
concern over the limits to natural selection was  revived 
by the discovery  of  extensive molecular variation: one 
of the key arguments  for  the  neutral theory was that 
natural selection could not  account for variation in 
amino acid sequence within and between species (KI- 
MURA 1968; KING and JUKES 1969). We still do  not fully 
understand what  limits the  rate of adaptation.  The ques- 
tion is important  both  for  understanding  whether spe- 
cies approach this limit in nature, and for  the practical 
task  of maximizing the response to artificial selection. 

HALDANE (1957) first attempted to quantify the lim- 
its to selection by showing that each substitution en- 
tailed a “substitution load”; this can be better ex- 
pressed as a  “lag  load,”  defined as the  net  difference 
in mean fitness between a hypothetical population  that 
adapted instantaneously to changing conditions, and 
one that  adapted by means of natural selection 
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( FELSENSTEIN 1971; MAYNARD SMITH 1976). Similar ar- 
guments were used to set limits on  the  number of  poly- 
morphisms that could be maintained by overdomi- 
nance ( LEWONTIN and HUBBY 1966; K”RA 1968; KING 
and JUKES 1969),  and  on  the  number of genes that 
could be maintained despite deleterious mutations 
( HALDANE 1937). Such load arguments have not been 
widely accepted, because they  rely on assumptions 
about how the effects of different loci combine,  and 
because they  involve comparison with an ideal genotype 
that may be vanishingly rare.  Truncation selection can 
sustain more substitutions and polymorphism and can 
eliminate mutations more effectively (MILKMAN 1967; 

Such counterarguments would be strengthened by  evi- 
dence  that  natural populations do in fact show  epistasis 
of the  required form and by some evolutionary or physi- 
ological argument as to why they should. Nevertheless, 
they do show that  the “genetic load”  does  not set any 
definite and robust limit on the extent of selection. 

Recent attention has concentrated on  another kind 
of limit, due to the  interference between selection at 
different loci. FISHER (1930, p. 122)  and MULLER 
(1932) pointed  out  that in an asexual population, ad- 
vantageous mutations could only be combined if they 
occurred sequentially, within the same lineage; sexual 
reproduction can speed adaptation by combining ad- 
vantageous mutations that arise in different lineages. 
The process was first quantified by HILL and ROBERT- 
SON ( 1966), who argued  that selection increases the 
variance in reproductive success, and so reduces the 
effective population size. Chance associations  between 

SVED et d .  1967; MAYNARD SMITH 1968; CROW 1970). 
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selected loci thus  reduce  neutral variability, as well as 
reducing  the probability of fixation of favourable alleles 
(MAYNARD SMITH and HAIGH 1974).  The same “hitch- 
hiking” effect is caused by any kind of selection-for 
example, against deleterious  mutations  (FISHER 1930; 
BIRKY and W ~ S H  1988; CHARLESWORTH et al. 1993; 
PECK 1994). Sex and recombination increase the ability 
of selection to act independently on different loci, and 
so may be favored by both  group  and individual selec- 
tion ( FELSENSTEIN 1974, 1987).  The observation that 
DNA sequence variability is reduced in regions of low 
recombination-for example, in Drosophila (AQUA- 
DRO and BEGUN 1993)  and  on  the mammalian Y chro- 
mosome (ELLIS et al. 1990)  “suggests  that  hitchhiking 
may have substantial evolutionary effects. 

This paper sets out a general  method  for calculating 
the probability of fixation of a favorable mutation, 
which can find itself in a variety of genetic backgrounds. 
The population is assumed to be very large ( N s  + 1 ) . 
The method is applied to find  the effect of favorable 
substitutions, fluctuating polymorphisms, and deleteri- 
ous mutations,  but  extends to cover any kind of popula- 
tion structure. With loose linkage, the effects can be 
explained by a reduction in effective population size 
caused by heritable variation in fitness (ROBERTSON 
1961 ) . However,  tightly linked loci can have a substan- 
tial effect that is not predictable from the effective pop- 
ulation size. Overall, the  hitchhiking effect of each kind 
of selection may substantially impede  adaptation. 

GENERAL METHODS  FOR FINDING  FIXATION 
PROBABILITIES IN STRUCTURED POPULATIONS 

Suppose that an allele can be found within one of 
several  possible  sites; these “sites” might  represent 
demes within a spatially subdivided species, or alterna- 
tive genetic  backgrounds within a single polymorphic 
population. Let the probability of ultimate fixation of 
an allele that is present  in a single copy in site i in 
generation t ,  immediately before  reproduction, be Pj,,. 
The  number of genes in  each site ( 2Ni) is assumed to 
be large enough  that  different alleles are lost indepen- 
dently of each other.  Thus,  the  chance  that  an allele in 
site i, and  an allele in site j are  both lost is ( 1 - Pt,t) ( 1 
- P,,,) ; in general,  the  chance  that a set of alleles is lost 
is ni( 1 - Pj,,) ‘ 8 ,  where there  are k j  alleles to be lost in 
site i, and  the alleles are everywhere rare ( k, + 2N, ) . 

The probabilities of fixation, Pj,,, can be found by 
iterating  through one  generation, in a straightforward 
extension of the  method of branching processes. This 
was introduced to genetic problems by FISHER (1922) 
and HALDANE ( 1927)  (see HARRIS 1963; POLLAK 1966; 
SCWFER 1970 for reviews). The allele of interest pro- 
duces j offspring with probability w.,] when in site i. 
This is the distribution of the  number of heterozygotes 
produced by a  rare heterozygote (which will almost 
certainly mate with a homozygote for  the  common al- 
lele) . Then 

13 

(1  - P,,t-l) = C w,j(1 - PZ)’ (1) 
j = O  

Here, Pz, is the probability that  an allele in site i at 
time ( t - 1 ) would be fixed, given that it is passed to 
precisely one offspring in  the  next  generation; P$ = 
xkMi,kPk,l, where Mi,k is the  chance  that  an offspring 
from a  parent  at site i will be  at site k .  HARRIS (1963, 
Chapter 11, Theorem 7.1) gives an equivalent expres- 
sion in terms of generating functions. If the distribution 
of offspring number is Poisson  with mean (1 + s t ) ,  
then 

j =  0 

X (1 - P t ) I  = exp[-(1 + s,)Pz1I ( 2 )  

The two-locus version of Equation 2 was derived by 
EWENS (1967). If s, is small, and  the fixation probabili- 
ties are of the same order as s, , then this transcendental 
equation can be simplified by approximating  exp ( x )  
as 1 + x + x2/2, . . . , and  dropping terms o (  s2) :  

p* 2 

2 
P,,,+, = ( 1  + s,) P?, - 2 ( 3 )  

(If  the distribution of offspring number is not Poisson, 
then  the second term on  the right is multiplied by the 
variance in offspring number.) For steady selection in 
a single site, Equation 3 has the solution P = 2s (HAL 
DANE 1927). This is the basic expectation against which 
we  will compare results for  heterogeneous populations. 

If movement between sites  also changes P by a factor 
of order s, ( i.e., M,,j is  of order s for i f j ,  P t l  - Pi,l = 
XjMi,jPj,l - P,,, is  of order s 2 ) ,  we can take change to 
occur approximately continuously in time and can ap- 
proximate P* by P. 

This extends  the result derived by BARTON ( 1987, Equa- 
tion 4b) using the diffusion approximation,  to allow 
for variation through time. 

APPLICATIONS 

Interference  from a selected  substitution: We  now 
apply Equation 4 to find  the fixation probability of a 
favorable allele within a single genetically heteroge- 
neous  population. Initially, we consider  the effect of a 
substitution at  another locus, and assume that  there is 
no epistasis ( i e . ,  that  the effects on fitness multiply). 
It is difficult to calculate the  joint fixation probability 
of two favorable alleles in a finite population. One must 
follow stochastic changes in  three variables (the allele 
frequencies  at  both loci, and  the linkage disequilibrium 
between them). Even under  the diffusion approxima- 
tion,  the  outcome  depends on five parameters (the 
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product of population size and  the selection favoring 
each allele, and  the initial allele frequencies and link- 
age disequilibrium) ( HILL and ROBERTSON 1966). Cal- 
culating  the fixation probabilities in a very large popula- 
tion is much simpler. After suitable scaling, the 
outcome  depends on only two parameters: the relative 
selection coefficients on the two loci, and the  rate of 
recombination, relative to  the  strength of selection (8 
= s / S ,  p = r / S ,  defined  below). Moreover, one  need 
only consider stochastic fluctuations at one locus. This 
is because the fate of a favorable allele is decided while 
it is at very  low frequency ( =l / Ns) ; it therefore  cannot 
affect the  fate of other rare alleles, because it is unlikely 
to interact with them until it becomes more  common. 
One can thus apply branching process arguments  to 
one locus at a time, by following the probability that 
a single favorable allele will be fixed, given that it is 
associated with one  or  other allele at the second locus. 
This argument  extends  to any number of  loci: one  need 
only consider the probability that each is fixed, given 
deterministic changes in the frequencies of  all the ge- 
netic backgrounds with  which it is associated. 

Consider an infinite population which is segregating 
for two alleles ( U, V) at some locus, with frequencies 
u, u ( u  + u = 1 ) . We count genotypes at  the haploid 
stage, but  the analysis  also applies to randomly mating 
diploids. The relative  fitnesses  of the alleles are ( 1 + 
S) : 1; S < 1. Assuming that density dependence is strong 
enough  that  population size remains constant  through- 
out  the substitution, the absolute fitnesses are (1 + 
Su) : (1 - Su) + O( S2) . With weak selection, time can 
be taken as approximately continuous, so that u in- 
creases logistically through time, with u = 1 / [ l  + 
exp ( - S t )  ] . Time is arbitrarily counted from the mid- 
point of the substitution. An allele with  selective  advan- 
tage s arises at  another locus; for  the  moment, we as- 
sume that effects on fitness are additive. Its probability 
of fixation depends  on  whether  it arises in the favorable 
background (and hence  produces, initially, 1 + Sv + s 
offspring), or in the less favored background (giving 
1 - Su + s offspring initially). Let these probabilities 
be P,, and P,, respectively. The probability that  an allele 
coupled with U recombines onto the opposite back- 
ground is ru, because u is the  chance  that it will pair 
with a chromosome carrying allele V. Thus, PEt = ruP,,, 
+ (1 - ru) Pqt, and similarly, P?, = ruPq, + (1 - 
ru )  Pu,,, Assuming r 1, we can apply the  continuous 
time approximation  (Equation 4 )  to give 

apl4 p', 
at 2 

m u  "- p," 
at 2 

- - = -rv(P, ,  - P,) + ( s +  Su)P, - - (5a) 

- -ru(P, - P,,) + ( s  - Su)P,  - - (5b) 

It is convenient to work  with the average probability of 
fixation, = ( Up, + upu) ,  and  the difference between 
the fixation probabilities in the two genetic back- 

TABLE 1 

S u m m a r y  of notation 

Pi 

P 

S 
5 

e 
T 
P n 
A 

R 
U 
X 
A 

The probability  that a  single  allele in  site i will 
ultimately  be  fixed;  the site, i, may  refer  to 
geographic  location  or  genetic  background 

Fixation  probability,  averaged  over  all  sites 
Selective  advantage of the  rare allele 
Selection on the  locus that  is interfering with  fixation 

of the  rare allele 
Scaled  advantage of the  rare allele; 0 = 5 /S  

Scaled  time; T = St 
Scaled  recombination; p = r / S  
Scaled  average  fixation  probability; n = p /2s .  ll = 1 

Scaled  difference  in  fixation  probability  between  two 

Map length in  Morgans 
Mutation  rate  per haploid genome 
Rate of selected  substitutions 
Scaled  rate of selected substitutions; A = X/S 

with no interference 

genetic  backgrounds: A = (Pu - P, ) /2s  

grounds, ( P ,  - Pu) . Scaling these relative to  the fixation 
probability in the absence of hitchhiking, 2s, and scal- 
ing time relative to S ,  we define 

" an - -8n(l - n) + 8uuA2 
d T  (6a) 

+ ( u -  ~ ) ( l  - e a ) ]  - l7 (6b) 

(Notation is summarized in Table 1 ) . For T S 0, the 
asymptotic solution is found by setting ll, A constant. 
As expected, this gives TI = 1: if a mutant arises long 
after the substitution has been completed, then its prob 
ability  of fixation is unaffected and equals 2s. Setting 
A constant  for T S 0 gives a quadratic  equation; when 
the  rare allele is  weakly selected ( s 4 S, 8 1 ) , A = 
1 / ( 1 + p ) . This is because while an allele arising with 
the  predominant Uallele has P,, = 2s, an allele arising 
in association with the deleterious Vallele can only be 
fixed if it recombines onto  the favorable background 
before being eliminated by selection. For small 8, P, = 
2 s p / ( l  + p ) , a n d s o A  = ( P u -   P U ) / 2 s =  1/ (1  + p ) .  

Equation 6, a and b, can be solved numerically by 
working back from some large time. Numerical results 
were obtained by using the Runge-Kutta routine 
NDSolve in Muthemuticu (WOLFRAM 1991 ) , integrating 
over the  range T = +10 to -40. Figure 1 shows  typical 
patterns  for  the overall probability of fixation, 2sn, for 
8 = s / S  = 0.001,  0.01,  0.1, 1, while Table 2 gives the 
minimum fixation probability [ min (n)  1, for various 
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dS = 1 

0 
-40 T 0 

-40 T 0 

FIGURE 1.-The  probability of fixation as a function of the 
time at which  the  favorable  mutation  occurs ( T = S t ) .  ( A )  
Tight  linkage: p = r / S  = 0.1. ( B )  Loose  linkage: p = r / S  = 
1.  Note that with p = 1, the  vertical  axis  runs  from 1.8s to 2s. 
The  heavy  curve to the  right in ( A )  and ( B )  shows  the prog- 
ressofthesubsti tution(u= 1 / [ 1  + exp(-T)]). 

8 and p.  When linkage is loose (e.g., p = r /  S = 1 )  , 
hitchhiking has little effect, the fixation probability 
never being reduced by >S% (at 8 = 0.3) ; with tight 
linkage ( p  = O . O l ) ,  it can be  reduced by >95% (at 8 
= 0.03) .  Unless linkage is extremely tight, the effect of 
a weakly selected substitution on a strongly favored al- 
lele is negligible: for example, with 8 = 10, and p = 
0.01, fixation probability is reduced at most by 0.2% 
(Table 2c). In the limit of complete linkage, an allele 
with advantage s < S (i.e., 8 < 1 )  cannot  be fixed if it 
arises in the unfavorable background, whereas if s > S 
( i . e . , 8 > 1 ) , ~ = 2 ( s - S ) = 2 s ( l - l / 8 ) . I f i t d o e s  
then fix, it will eliminate the favorable allele at  the other 
locus;  however, a little recombination will ensure  that 
both  are fixed. 

The fixation probability can be substantially reduced 
even when selection on both loci is similar; indeed,  the 
fixation probability is reduced to a lower  value when 8 
= 0.1 than when 0 is extremely small.  However, if the 
new allele is only weakly favored (8 < 1 ) , its fixation 
probability is reduced even  when it arises a  long time 
before the substitution at  the second locus (for exam- 
ple, compare  the curves for 8 = 0.001, 8 = 1 in Figure 
lA, left) . This is because a weakly selected allele is 
likely to segregate at low frequency and  therefore  be 
vulnerable, for a  long  period ( t = 1 / s, T = 1 / e )  
before being fixed. 

Net reduction in  jixation probability: A simple measure 
of the  net effect of hitchhiking is the total reduction 
in (relative) fixation probability, integrated over  all 

possible  times  of origin, JYm ( 1 - ll ) dT. (This is the 
area below the line P = 2s in Figure 1.) Suppose that 
a favorable mutation occurs somewhere in a  long time 
interval spanning  the substitution at  the second locus 
( t o  < t < tl , where to < 0,  t1 0 ) .  Its probability of 
fixation, averaged over this period, is 

If substitutions occur  at some very  low rate, X 4 S, then 
the average fixation probability is reduced by 1 - 
A (1 - n ) d T ,  where A = X/S. Interactions be- 
tween multiple substitutions are  dealt with in BARTON 
(1994a), where it is  shown that  the fixation probability 
declines linearly with A up to a threshold 

above  which fixation becomes very unlikely in a large 
population. 

Figures 2 and 3 show  how the net effect varies  with 
8 and p. When linkage is loose ( p  2 1 ) , the  net effect is 
small ( 51 .5 )  and is almost independent of the relative 
selection coefficients for 8 < 1 (Figure 2)  . It declines 
rapidly  as the recombination rate increases (Figure 3, 
right) . When linkage is tight ( p  5 0.1 ) , the net effect 
on a weakly selected allele can become very large; it 
declines inversely  with 8 and depends only  weakly on 
p. This is because the net effect depends mainly the 
length of  time for which the new  allele remains vulnera- 
ble and so is proportional to 1 / 8. 

Hitchhiking as a catastrophe: The greatest net reduc- 
tion in fixation probability occurs when the new muta- 
tion is  weakly selected ( i.e., 8 = s/ S 1 ) . In this  case, 
the effect is equivalent to that of a catastrophe, which 
suddenly reduces the  number of  alleles by a factor w. 
In APPENDIX A, an approximation for the  strength w of 
the equivalent catastrophe is derived (Equation A 5 ) .  
When linkage is tight ( p  4 1 ) , this  simplifies  to: 

w = l - e p  ( 7 )  

This approximation can be  compared with MAYNARD 

SMITH and HAICH'S (1974) calculation of the effect of 
a favorable mutation on a  neutral allele which is at 
substantial frequency. Integrating  their Equation 13 
shows that if the new mutation arises  with one  neutral 
allele ( V ,  say), the frequency of the complementary 
allele is reduced from u to wu,  where w = 1 - (2N)-' 
for 2 N 4  1. This has the same form as Equation 10, but 
with 1 / 2N replacing 8 = s/ S.  The difference arises 
because MAmm SMITH and HAIGH only  followed the 
decay of the initial linkage disequilibrium produced 
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TABLE 2 
The effect  of a selected substitution on the probability of fixation of a linked allele 

p = r / S  = 0.01, -log(l - 8”) 1 
8 = s/S min(ll) W 1 - 8” JIJl - l l ) d x  e (0 + e)‘ - v 4  

0.001  0.0680  0.0669 
0.00316  0.0585  0.0558 
0.01  0.0507  0.0447 
0.0316  0.0470  0.0336 
0.1  0.0544  0.0236 
0.316  0.1067  0.0176 
1 0.5699 
3.16  0.9739 

10  0.9975 

p = r /S  = 0.1, 
8 = s/S min (n) W 

0.0667 2698.59 2706.87 
0.0559 906.98 91  1.84 
0.0450 306.46 310.09 
0.0339 103.95 106.98 
0.0228 35.14 37.83 
0.0114 11.37 14.14 

1.91 1  1.299 
0.105  0.102 
0.010  0.010 

-log(l - 8”) 1 
1 - 8” s:m(l - H ) d x  8 (0 + 8)‘ - ‘/4 

0.001  0.5166  0.5126  0.4988  664.83  695.52 
0.00316  0.4576  0.4469  0.4377  251.44  261.30 
0.01  0.4005  0.3734  0.3690  95.59  99.68 
0.0316  0.3571  0.2934  0.2921  36.33  38.92 
0.1 0.3524  0.2133  0.2057  13.59  15.81 
0.316  0.4474  0.1545  0.1087  4.70  7.02 
1  0.7718  1.01  1.042 
3.16  0.9755  0.098  0.096 

10  0.9975  0.0099  0.010 

p = r / S  = 1, -log(l - ep) 1 
e = s/s min(ll) W 1 - 0” J_”,(l - r I ) d x  8 ( P  + - ’/4 

0.001 
0.00316 
0.01 
0.0316 
0.1 
0.316 
1 
3.16 

10 

0.9986 
0.9957 
0.9876 
0.9687 
0.9386 
0.9207 
0.9471 
0.9857 
0.9980 

0.9986 0.9990 1.4254 
0.9956 0.9968 1.3986 
0.9865 0.9900 1.3334 
0.9609 0.9684 1.1849 
0.8973 0.9000 0.9164 
0.7526 0.6838 0.5692 

0.2448 
0.0581 
0.0083 

1.0005  1.330 
1.0016  1.322 
1.0050  1.299 
1.0162  1.228 
1.0536  1.042 
1.2021  0.675 

0.267 
0.059 
0.008 

The effect is tabulated as a  function of the ratio between the selective advantages (8 = s/S). The recombina- 
tion  rate is r = 0.01s in the first section, 0.1s in  the second section, and S in the last section. Min(lT) gives 
the minimum  factor by which fixation probabiltiy is reduced.  The effect of a substitution on a weakly favored 
allele is as if that allele were suddenly reduced in numbers by a  factor W; this is compared with the  approximation 
for small 8, 1 - 8p (Equation 7). The  net %eduction in fixation probability, averaged over all times at which 
the mutation  might  occur, depends  on s-,(l - ll) dx; this is compared with the prediction for small 8, 
-log(l - P ) / 8  (Equation 8) and large ( p  + e)  (Equation 9). 

when a new mutant arises in coupling with a particular 
neutral allele and neglected subsequent disequilibria 
produced by genetic drift. OHTA and KIMURA ( 1975) 
consider  the opposite case, where a  neutral  mutation 
arises in the presence of a substitution. However,  they 
do  not find analytic solutions. 

The  net effect of a substitution is found by integrating 
Equation Al: 

I;-(l - r I ) d T =  
log( l /w)  - -log(l - 6 ’ P )  - 

6’ 6’ (8 )  

This simple approximation is compared with exact 
calculations from Equation 6 in Figures 2 and 3 ( 0) 
and in Table 2. It is in excellent agreement  for p 5 1, 
0 I 0.1. 

Though  the numerical results indicate that  the great- 
est effect will be of  closely linked substitutions on weakly 
favored alleles, the cumulative effect of  many  loosely 
linked substitutions may be  important. An approxima- 
tion for this case  is  given by Equation B6 in APPENDIX 
B .  For large ( p + e ) ,  this is close to 

1 

This approximation is shown in Table 2, and by trian- 
gles in Figures 2 and 3. It is in excellent agreement 
whenever p > 1 or 6‘ > 1. Thus, almost the whole 
range of parameters is covered by the complementary 
approximations of Equations 8 and 9a. Note that  the 
additive variance in relative  fitness contributed by a sin- 
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0.001 t I 

0.001 0.01 0.1 1 10 
dS 

FIGURE 2.-The net  effect of a substitution  depends  on Srm( 1 - n)  dT (solid curves). This is compared  with  the 
theoretical  predictions  for small 0, -log ( 1  - O p )  /6J (0) , 
andfor la rge(p+6J) , l / [ (p+6J) ' - ' /4 ]  (A),forvarying 
linkage ( p  = r / S  = 0.01, 0.1, 1 , 2 ) .  The  integral is calculated 
numerically  over  the  range T = -40 to +lo; the  contribution 
for T < -40 is found by assuming  that ll has  the  form w/ 
[ w +  ( 1  - w) exp(T)].  

gle substitution is 2 s ;  the total additive variance due to 
substitutions which occur  at  a low rate h is  var ( W )  = 
2hS (CROW 1970). Throughout, var ( W )  denotes  the 
additive genetic variance in relative fitness, scaling 
mean fitness to w = 1. In terms of the original parame- 
ters, the average fixation probability is: 

- n = 1 -  var ( W) 
( r +  s +  S) (9b) 

2 [ ( r  + s)2 - S2/4]  

Epistasis: Suppose  that the  rare allele increases fitness 
by svwhen  coupled with the Vallele at  the  second locus, 
and by su when coupled with the U allele; let Ov = sv/ 
S, 0" = s u / S .  Because we assume weak selection and 
random mating, only the average fitness of each gamete 
when associated with a randomly chosen gamete  need 
be considered.  Thus, sv = ( usw + vsw),  su = ( usuu + 
usw). Fixation probabilities are now  given by modifymg 
Equation 5, such that  the terms ( s  + Sv) , ( s  - S u )  in 
Equation 5, a and b,  are  replaced by ( su + Sv)  , (sv - 
Su) . Note that  the course of the substitution should 
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10 

FIGURE 3.-The  net  effect of a substitution, SIm ( 1 - n)  dT, 
plotted  against p = r /  S for various 0 = s/ S (solid curves) . 
This  integral is calculated as in  Figure 2.  It is compared with 
the  theoretical  predictions  for small 0, -log( 1 - 6 J p )  /6J (0) , 
andfor large ( p  + e ) ,  l / [ ( p  + 6 ) ' -  1/4] (A). 
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FIGURE 4.-The effect of a strongly  selected  substitution 
( S  * s, 6J = s/ S < 1 )  is equivalent to a catastrophe  that 
reduces  numbers by a factor w. This is estimated  from  the 
value at T = St = -40 (solid curves), and  compared with the 
prediction  for small 0, w = 1 - 6Jp (0).  w is plotted on a 
logit  scale. 

still be given by u = 1 / [ 1 + exp ( - T )  ] in these equa- 
tions. This is because, although the epistatic effect of 
the new allele would alter  the course of that substitution 
if it did increase to appreciable frequency, the calcula- 
tions are based on following the probability of Zoss 
through time (Equations 1 and 2 )  . Hence, this pertur- 
bation is irrelevant. 

With dominance, su and sv would change  through 
time with changes in u, as  would the selection coeffi- 
cient S. The fitness of homozygotes for  the  rare allele 
can be neglected, however, provided that  there is some 
selection on heterozygotes ( s  > 0 ) .  The fixation proba- 
bility  of a completely recessive allele is  very small ( =2s/ 
T N )  for large N ( CROW and KIMURA 1970, p. 427). For 
simplicity,  only additive selection ( su, sv, S constant) is 
considered  here. However, variation in  the  parameters 
through time, such as might  be  produced by domi- 
nance or by a  changing  environment, is dealt with 
below. 

First, consider  a weakly selected allele which  is  always 
favored, albeit to different  degrees in different  genetic 
backgrounds ( S > sv > su > 0 ) . This has fixation proba- 
bility 2s" long  before  the substitution and decreases 
to 2su after it. Naively, one would expect the fixation 
probability to be twice the  net selective advantage, 
2 ( usli + usv) (dotted curve in Figure 5A) . In fact, it is 
lower, both because ( usu + usv) is decreasing through 
time, and because of hitchhiking. These two factors 
reduce fixation probability during  the course of the 
substitution, and for  a time t 1 / sv before it (Figure 
5A) .  If the allele does fix, it will have little effect on 
the  second locus. 

Second,  consider  a weakly selected allele which  is 
only favored when associated with the new allele U ( S  
+ su > 0 2 sv). The fixation probability rises from 
effectively 0 to 2s" (Figure 5B) .  With loose linkage, it 
becomes appreciable  a time t 1 / sv before Uincreases 
( p  = 1,  10 in Figure 5B) .  Hitchhiking  reduces  the 
probability toward 2usu ( p  = 0.1, 0.01 in Figure 5 B ) .  
With complete linkage, the new allele can only fix if it 
arises in association with U, which occurs with probabil- 
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FIGURE 5.-The  probability of fixation  of  an  allele. ( A )  An 
allele that has  advantage sv = 0.2 S with allele V at  the  second 
locus,  but  only su = 0.05s with U. The  probability of fixation 
falls  from 2sv = 0.4s before  the  substitution to 2sa = 0.1 S 
afterward. It is  lower than 2 ( usv + usa) (dotted line) both 
because  its  net  advantage ( usv + usa) is decreasing  and  also 
because  of hitchhiking.  The curves for  various p = r /  S show 
the  reduction in fixation  probability as linkage  becomes 
tighter.  The  substitution ( u )  is  shown  by the heavy  curve 
(lower right). ( B )  An allele  that  has  an  advantage  only  when 
coupled  with  allele U at  the  second  locus ( sv = 0, sa = 0.1 S) . 
With  loose  linkage ( p  = r / S  = 1, l o ) ,  fixation  probability 
approaches 2s" = 0.2 S over  times t = 1 / svbefore  the  substitu- 
tion. With tighter  linkage ( p  = 0.1, 0.01 ) , hitchhiking im- 
pedes  fixation. As in ( A )  , the  heavy  curve  shows the  substitu- 
tion ( u )  . ( C )  The  reduction  in  fixation  probability  for  an 
allele  that  has  an  advantage  only  when  coupled  with  allele V 
at the second locus ( sv = 0.1 S, sa = -0.1 S) . This  depends 
on  population  size;  here, NS = 100. The  prediction is 
that  fixation  probability  should  fall  around T = St = 
- S log(8N2sVs") /sy = -66.5. As in ( A ) ,  the heavy curve 
shows the  substitution ( u )  . 

ity u. The fixation probability of an allele that  does 
arise in background U decreases from Pu = 2 ( su + 
S) to 2s". Hence,  the average fixation probability is 
somewhat greater  than 2us"when p = 0. 

Third,  consider  the converse, where the allele is only 

favored when associated with the original allele V ( S 
sv > 0 > su) . In  a truly infinite population, it could 
never fix, because even if introduced  long  before U 
rises to high frequency, it would never completely re- 
place the  homologous allele and so would be elimi- 
nated  once it lost its advantage. However, in  a very large 
population, its fixation probability can be approxi- 
mated as follows.  If it is introduced  at time to < 0, it 
has a  chance 2sv of being established and of increasing 
tofrequencyp=h/{qoexp[sV(t- t o ) ]  +h].p,,varies 
randomly, because of stochastic fluctuations in its initial 
increase and has an exponential  distribution with  ex- 
pectation 1 /4Nsv (N. H. BARTON, unpublished  data; 
Equation 4 for small s) . The expectation is substantially 
> 1 / 2Nbecause an allele that is destined to fix is likely 
to rise more rapidly than  expected from its selection 
coefficient (MAYNARD SMITH and HAICH 1974). If the 
allele is to fix, the alternative allele Qmust be reduced 
to small numbers by some time tl 4 0. Then, q1 = (1 / 
p , )  exp[ sv( tl - t o )  ] ; the  chance  that all 2Nql copies 
will be lost is ( 1 - PQ) = exp ( -2Nq1 PQ) , where PQ 
is the probability of fixation of a single Q allele at time 
t l .  PQ can be calculated numerically from Equation 6 
( c$ Figure 5B)  and must have the form s& exp( svtl ) 
for  appropriate tl . Integrating over the  exponential dis- 
tribution of h, the  net fixation probability is: 

P = 2% exp( - 2 ~ q ~ ~ ~ )  exp( -4N%po)4Ns,dp,, JOrn 
= 2s exp( - 2 ~ s ~  exp(st0) / p b )  

X exp( -4N~p,,)4Nsvdp, 

= 2$g[8N2%sUCexp(~to)I (10) 

where g( x )  = .fI exp (-y - x/y)  dy = 2&K1 (2&),  
Kl  is the modified Bessel function,  and C is cho- 
sen so to  splice  the two approximations.  The  allele 
is unlikely  to fix unless  it is introduced  before t 
-log( SIv2 1 svsul ) / sv; linkage  increases the fixation 
probability  of  this  ultimately  disadvantageous  allele 
(Figure  5C) . 

Fourth,  suppose  that  the new allele  has  effect  com- 
parable with the  second  substituting  locus, so that if 
it is established, it affects the  subsequent evolution 
of that locus. The fitnesses of haplotypes (QF PV, 
QU, PU) are  in  the ratios ( 1 ,  1 + sv, 1 + S ,  1 + S + 
su)  . If S > 0,  sv > 0,  su > 0 ,  but S + su < sv, then if 
Pis fixed,  it will cause the  elimination of the formerly 
advantageous  allele U at  the  second locus. However, 
this subsequent  complication  does not  alter  the calcu- 
lation of the probability that Pwill  be  fixed:  when the 
new allele (P) is so  rare as to  be  vulnerable  to  random 
loss, it  cannot affect the  course of substitutions  that 
are already  established.  Figure 6 shows an example 
with sv = 2 S ,  su = 0.5 S ;  the  dotted curve shows how 
the fixation  probability falls from 4S to S as the ge- 
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FIGURE 6.-Allele P has  advantage sv = 2s when  coupled 
with  allele V at the  second  locus,  but  only sU = 0.5 S when 
coupled  with U. The two loci  recombine at r = S. Allele U 
has  an  advantage S when  coupled  with Q, but a disadvantage 
-0.5s when  with P ,  thus, if allele P fixes, allele U will  be 
driven  out  of  the  population  unless it has  already  gone to 
fixation.  The  upper  dotted curve  shows the  probability  that 
a single  copy of P will fix, as a function of the  time  when it 
is introduced, given that allele U substitutes at T = 0. The 
lower  heavy curve shows the  frequency of allele P if it  does 
fix, reaching  appreciable  frequency  after T = 5.  The  light 
curve  shows  the consequent  elimination of U. 

netic  background  changes  from V to U. The lower 
curves show the  outcome if allele P is established at 
some early time, so as to  increase  to  appreciable  fre- 
quency  after T = 5. Allele U is eliminated  (light 
curve ) , unless  it fixes before P increases.  In  this  exam- 
ple, because  selection on  the two loci is necessarily 
of similar strength,  hitchhiking only causes a  slight 
reduction  in fixation  probability. However, linkage 
does  alter  the  outcome if P does fix, because epistasis 
builds up linkage  disequilibrium.  Figure 6 gives re- 
sults for r = S ;  if linkage is looser, P increases  to 
eliminate  Umore slowly, so that unless the  population 
is extremely  large, both alleles are likely to fix. 

Finally, if allele Uis  only at  an advantage when associ- 
ated with P, and conversely, P is only at  an advantage 
when associated with U ( sv < 0, su > 0, S < 0, but S + 
su > sy) , there  are two stable states. Transition between 
them is impossible in an infinitely large population;  the 
probability ofjoint fixation will decline with exp( - NS) 
(WRIGHT 1941 ) . The methods  presented here  are  not 
appropriate, because the fate of the alleles is not deter- 
mined when they are  at very  low frequency, and so they 
will not  be lost independently of each other  (Equation 
2 ) .  In all other cases, however, the effects of epistasis 
in a large population  can  be  treated by considering 
stochastic fluctuations at  one locus at  a time. 

Fluctuating selection: Balancing selection increases 
the level  of neutral variation at closely linked loci ( T = 
p)  through "associative overdominance" ( OHTA 1971; 
HUDSON et al. 1987). However, if the frequency of the 
polymorphism remains  constant,  the probability of  fix- 
ation of favorable alleles will be unaffected. This is be- 
cause at equilibrium,  the favorable allele produces  the 
same distribution of offspring, regardless of the  genetic 
background. "A ( 1970)  demonstrated  a similar 
invariance for symmetric migration among  demes of 

constant size. Fluctuations in allele frequency have a 
similar effect to substitutions in  reducing fixation prob- 
ability: in both cases, the  reduction is caused by chance 
associations with genetic  backgrounds  that  are chang- 
ing in abundance. Because it may be that  much  more 
additive variance in fitness  is because of fluctuations in 
persistent polymorphisms than to substitutions of new 
alleles, fluctuations may cause a  greater  reduction in 
fixation probability. As before,  the fixation probabilities 
in  the two genetic backgrounds ( PLT, Pv) change with 
the  frequencies of those backgrounds (u, v )  . Let the 
marginal selection coefficient on  the polymorphism be 
S -  f ( T )  , so that d u / d T  = Sf ( T )  uv (scaling time 
to T = St as before).  Integrating, u = 1 / [ 1 
+ exp( - J f d T )  1 .  Assume that  fdTremains  bounded, 
so that  the locus remains polymorphic. Stability could 
be ensured by either  overdominance or frequency de- 
pendence; all that matters here is the actual pattern 
of allele frequencies, as determined by the selection 
coefficient, Sf ( T )  . One might consider f ( T )  to be a 
stochastic variable, or a definite sequence. Equation 6 
extends to  give: 

= A { p  + (2l-I - 1 ) O  
8T 

+ ( U -  v ) [ f ( T )  - O A ] )  - f ( T ) U  (1lb)  

The average fixation probability, II, is not directly af- 
fected by fluctuating selection at  the primary locus 
(Equation 1 l a ) .  Fluctuations generate  a difference in 
fixation probabilities between genetic backgrounds A 
(Equation 1 1b) , which then alters n. Note that because 
the driving term in  Equation 1 la, OuvA ', is  always posi- 
tive, fixation probability must always be reduced. 

Figure '7 shows  typical solutions of Equation 11. Fixa- 
tion probabilities differ substantially between back- 
grounds,  the probability being lower if the new allele 
arises in the  background  that is about  to decrease. How- 
ever, the  net probability varies  very little (heavy curve) . 
This is because when the  rare allele is  weakly favored, 
P changes slowly ( = 8; Equation 1 l a )  In this example, 
s = 0.1 S, where S is the maximum selection on  the 
polymorphic locus. Figure 8 gives the average fixation 
probability as a  function of recombination  rate. As for 
a  substitution,  the effect is appreciable only when the 
new allele is selected less strongly than is the polymor- 
phism ( 6  = s /S  < 1 ) . Then, if linkage is tight ( p  = 
r /  S < 1 ) , the fixation probability is reduced towards 
a limiting value  which  is independent of s and r ,  and 
depends only on  the pattern of allele frequencies  at  the 
polymorphic locus. 

These numerical results can be understood by consid- 
ering  the limits of loose and tight linkage. If there is 
no recombination,  the fixation probabilities in the dif- 
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FIGURE 7.-Fluctuating selection S .  cos( w T )  causes allele 
frequency to vary cyclically, between u = 0.1 and u = 0.9 
( w  = 0.455;  lower part of figure). In  consequence, fixation 
probability of an allele at a linked locus vanes cyclically ( 0  = 
s/ S = 0.1, p = r /  S = 0.1 ) . The light curves in  the upper 
part of the figure show Pv, Pu, relative  to the value expected 
with no hitchhiking, 2s. The heavy curve shows the net fixa- 
tion probability, P = ( u P U  + UP"), which is reduced on aver- 
age by a factor 0.613. The figure shows one cycle, spanning 
t = (27~/wS) = 13.81 S. 

ferent backgrounds are  independent of each other  and 
are  just those of an allele that multiplies at rates s + 
US f ( T )  , s - us f ( T )  , respectively. If the new allele is 
strongly selected (s S) , fluctuations have little effect 
on it. If it is  weakly selected, and if fluctuations occur 
over a time scale t x 1 / S (as must be if the polymor- 
phism is to persist at  intermediate frequency),  then the 
arguments of APPENDIX B lead to 

n 
A x - - ( u - C )  

uu 

- 1 
11 = 

1 + E( (u - q') 
uu 

where E (  ) denotes  the expectation, and a = E (  u). 
(Note that  neutral variation is reduced to a  greater 
extent. Considering fluctuations in allele frequency 
within the  separate genetic backgrounds show that  the 
reduction is by a factor ( N , / N )  = l / E [ $ / u  + 3/77 
+ var ( u) / uv] ) . The heavy line to  the left of Figure 8 
shows the limit of Equation 12b;  the average fixation 
probability approaches it for 0 5 0.1, p 5 0.1. If varia- 
tions in u were extreme, E [  (u - C )  */ uv]  would  be- 
come very large, and fixation probability would tend 
to 0. 

If linkage is loose, or if the  rare allele is strongly 
favored, the  arguments of APPENDIX A lead to 

e = 0.01 

s t  0.001 
0.01 

P 

FIGURE 8.-The  average reduction  in fixation probability 
due to fluctuating selection. Allele frequency at the polymor- 
phic locus vanes between = 0.1 and %,, = 0.9,  as in 
Figure 7. Numerical results are plotted as a function of recom- 
bination rate ( p  = r /  S) , for alleles with advantage 0 = 0.01 
( 0 )  , 0.1 ( W ) and 1 (A) . Both axes are logarithmic. The 
heavy line to the left shows the lower bound of 2/[  1 + 
IO [log( %in)  11 = 0.5519 (2s) reached with  small p,  0 
(Equation 12b; Io is the Bessel function).  The three light 
curves to the right show the approximations for large ( p  + 
0 )  (Equation 13b).  

0.1 1 

Here,  the average fixation probability is reduced in pro- 
portion  to  the additive variance in relative  fitness, 
E [  2 (Sf) ' uu ]  . This is because if linkage is loose, or 0 
large, hitchhiking has  only a transient effect, and so the 
ultimate fate of the selected allele is irrelevant: all that 
matters is the additive variance in fitness (see  below). 
This approximation is shown by the light curves on the 
right of Figure 8; it is accurate for all degrees of linkage 
if s 2 S, and for r > Swhen s < S. 

Deleterious alleles: Assume that  the rate of mutation 
to deleterious alleles is p and  that heterozygotes for 
such alleles  have  fitness reduced by S.  There is no back 
mutation. We  will assume that  the  mutation rate is small 
enough  that homozygotes for the deleterious alleles are 
negligible, so that  the equilibrium is at u = p / S .  Fixa- 
tion probabilities at the  other locus are given by 

P' 
2 

+ ( S  + Su)P, - (14b) 

This only differs from Equation 5 in that  the sign  of S 
has been reversed and  there is an additional term, p( P, 
- Pu) , in Equation 14b that represents the probability 
p that  an allele associated  with allele Vwill find itself 
associated with allele U in the  next  generation, as a 
result of mutation from V to U. 

Analysis  of this case is simple, because fixation proba- 
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FIGURE 9.-The  effect  of deleterious  mutations  on  fixation 
probability,  relative  to  the  maximum  possible effect [ ie., ( 1 
- ll) / u ]  , plotted  against p = r /  S for 0 = s/ S = 0.1, 1, 10. 
The  scale ( 1 - n)  / u is chosen  because it is independent 
of u. 

bilities will reach an equilibrium. As before, solution is 
facilitated by rescaling T = S t ,  n = (UP, + UP") /2s, A 
= (Pu - P,)/2s: 

an 
d T  
" - 0 = -0n(l - n) + 8uuA2 (15a) 

" - o = + u +  (2n - 1 ) e  
d T  

- ( u -  ~ ) ( l  + e a ) ]  + Il (15b) 

In  the limit of  weak mutation, u = p/ S is small, and II 
is close to 1: 

ll = 1 - uA2 + 0 ( u 2 )  (16) 

Substituting into  Equation  15b and  dropping terms of 
order u2 leads to a  quadratic  equation  for A, whose 
solution simplifies when linkage is  very loose, or very 
tight: 

A = - [-(1 + p + 0) + d(1 + p + - 401 (17a) 

For p = 0: 

1 
28 

A = - 1  I I = l - u  (17b) 

For p 1, or for arbitrary p with 0 < 1: 

The fixation probability is reduced by at most a  factor 
( 1  - u) = (1 - p /  S) when linkage is complete. Figure 
9 shows the reduction in fixation probability relative to 
this value [ i.e., (1 - n) / u ]  , as a  function of p = r /  
S .  For loose linkage ( p  + 1 ) , Equation 17c can be 
expressed in terms of the additive variance in relative 
fitness, var (W) = 2pS: 

n = 1 -  var ( W) 
2 ( S +  r +  s ) 2  

( r  + S) (17d) 

This converges to the same expression as for substitu- 
tions (Equation 9 )  and fluctuating selection (Equation 

13b). Deleterious mutations at a single locus only cause 
an appreciable  reduction  in fixation probability when 
linkage is tight ( r  5 S) , and selection on  the new mu- 
tant is  weak (s 5 S) . However, Equation 17d suggests 
that  unlinked loci ( r  = %) can have an appreciable 
cumulative effect. With loose linkage ( r = I/*),  one 
cannot safely assume continuous  time, and so the dis- 
crete version of Equation 14 should  be used. At equilib- 
rium, this gives the same equations as for weak recombi- 
nation. 

FISHER (1930, p. 122) gives a simple argument  for 
the case  of complete linkage ( p  = 0)  ; this will be useful 
in  the  next section, where we consider multiple loci. 
In  a large population  that is in  a  mutation/selection 
balance, only the fittest class  of genomes will contribute 
descendants to the  distant  future. Because the numbers 
of this fittest class must remain  constant  through time 
in  a stable population,  an individual carrying no delete- 
rious mutations must on average leave one offspring 
that also carries no deleterious mutations. Because the 
proportion of offspring with no mutations is (1 - p )  
in the  present case, the absolute fitness of the fittest 
class must be 1 / ( 1 - p )  . If a favorable allele arises in 
coupling with a  deleterious allele, it will certainly be 
lost if the new genotype is still  less  fit than  the fittest 
class ( i e . ,  PI = 0 if 1 + s - S < 1, or s < S).  If the 
favorable allele arises within the fittest class,  its probabil- 
ity  of fixation will depend  on  the absolute number of 
intact copies produced: ( 1 + s) ( 1 - p )  [ 1 / ( 1 - p )  ] . 
Hence, regardless of mutation  rate,  the fixation proba- 
bility for favorable alleles that arise in  the fittest class  is 
just Po = 2s. This can be  confirmed by setting p = 0 in 
Equation 17a. Because the favorable mutant has a 
chance (1 - u) of arising in  the fittest class, the  net 
fixation probability is reduced by p = (1 - u) . The 
argument  extends to any number of loci:  with no re- 
combination,  mutations with a slight advantage s can 
only be fixed if they arise in the fittest class and have 
fixation probability 2s  if they do. Because the fittest 
class  may be extremely rare, fixation probability can be 
greatly reduced  in an asexual population (PECK 1994). 
CHARLESWORTH et al. ( 1993) apply this argument to the 
effect of deleterious  mutations on neutral variability. 
Here,  the  argument is approximate, because mutations 
on chromosomes carrying deleterious alleles contribute 
to heterozygosity, even if they cannot ultimately be 
fixed. 

Two loci: The previous section found  the effect of 
deleterious  mutations  at one locus. Because  all  loci 
within map distance r = S will have a similar effect 
(Figure 9 )  , we must consider  the net influence  of dele- 
terious mutations over many loci. In principle, this can 
be calculated exactly, by following the probability of 
fixation of an allele embedded  in all  possible genetic 
backgrounds. However, this is impractical for  more 
than  a few loci, because there  are so many  possible 
genotypes. In this section, I show that  the effects of 
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mutations at two loci are close to multiplicative. In the 
next section, I consider  the simple case  of unlinked loci 
of equal effect. Taken together, these analyses  allow 
extrapolation  to find the net effect of high per-genome 
mutation rates. 

With two loci, we must follow the fixation probabili- 
ties  of  alleles that arise in the  four possible backgrounds 
( Pu,, P,,,  P",, Puu). The favorable allele is flanked by 
two loci subject to  mutation at rates pl,  ,u2 to alleles 
with frequencies u l ,  ~2 and disadvantages Sl , $; recom- 
bination rates are q , 9 ,  respectively: 

-" apuu - -rIY (Puu - PUU) - 7!2Y(Puu - PUU) at 

+ ( s  - SlUl  - s 2 7 4 ) P U U  - 1 (18a) 
p:tl 

Linkage is assumed to be tight ( r  = S) , so that  double 
crossovers can be ignored. These equations can be 
solved numerically to give the average fixation probabil- 
ity, B = ( u I ~ P u r  + u1z12Puu + u1u2PUu + ulyPu,). Be- 
cause selection is  weak and additive, linkage disequilib 
rium between the deleterious mutations is negligible. 
In Table 3, this is compared with the  product of the 
effects  of each locus alone. While the effects  of the two 
loci are  not precisely multiplicative, the fit is extremely 
close for most parameter combinations. The deviation 
is greatest for high mutation rates, and so Table 3 gives 
results for ul = % = 0.5. Even  when deleterious alleles 
are so frequent,  and  their effect consequently large, 
the deviation is only appreciable for tight linkage, and 
intermediate values  of 0 = s/S. The final column of 
Table 3 also gives the prediction based on effective 
population size, an  approximation  that is discussed  be- 
low. Agreement is comparable with the multiplicative 
prediction  for loose linkage (when  the predictions are 
in  any  case  close to each other), but is much  poorer 
for tight linkage. 

Exchangeable loci: Consider a diploid organism, which 

TABLE 3 

Comparison between  the effects  of two flanking loci, and 
the effects  of each locus alone 

- 
0 = s / ~  p = r / S  P, /~s  ( P ~ / ~ S ) / ( F I / ~ S ) ~  PZ - - - 

0.1 0 0.2500 1 .ooooo 0.75000 
0.1 0.3689 1.00115 0.84650 
1 0.8268 1.00029 0.99199 
2 0.9296 1.00004 0.99872 

1 0 0.5917 0.81219 0.79469 
0.01 0.6498 0.88480 0.86670 
0.1 0.7496 0.96503 0.95140 
1 0.9192 0.99946 0.99778 
2 0.9595 0.99997 0.99958 

10 0 0.9954 1 .ooooo 0.99999 
0.1 0.9955 0.99997 0,99999 
1 0.9962 0.99998 1 .ooooo 
2 0.9968 0.99999 1 .ooooo 

- ;) 

- 
P2/2s gives the factor by which two equivalent loci reduce 

fixation probability,  whilst (P1/2s)' gives the square of their 
individual effects. This is represented in the fourth column 
by the  ratio (P2/2s)/(Pl/2s)2, which is usually close to 1.  
The final column gives  the  ratio between the effect of the 
two loci and that expected from  their  individual effects on 
effective population size (see  text). The recombination rates, 
mutation rates, and selective effects are equal (rl = Q = r, SI 
- .S, = S, p, = p2 = p) .  Values  are  derived by numerical 
solution of Equation 18. 

has a large number of unlinked loci, each subject to  a 
low rate of mutation. Selection acts on fecundity, such 
that  the  expected  number of offspring declines geomet- 
rically  with the  number of deleterious mutations, as 
(1 - S) '. The  number of  new mutations per haploid 
genome per generation  then follows a Poisson distribu- 
tion with mean U = Zp; the  number of  new mutations 
per diploid individual is also Poisson, with mean 2U. 
Selection will not  generate linkage disequilibrium, and 
so the  number of deleterious alleles (counted in d ip  
loids, before reproduction) foilows a Poisson distribu- 
tion with mean 2 U/ S. The mean fitness of the popula- 
tion is exp( -2 U) , precisely the same value as with 
asexual reproduction  (CROW 1970). 

Consider an allele that increases fitness by a factor ( 1 
+ s) , regardless of the  number of deleterious mutations 
present. If all  loci are  unlinked, its fixation probability, 
P t ,  depends only on the  number of deleterious muta- 
tions with  which it is associated, i. Pi is counted in 
diploids, immediately before reproduction. Because the 
favorable allele is  very rare, we need only  follow the 
number of offspring that carry this allele. This follows 
a Poisson distribution, with mean W, equal to half the 
expected total number of offspring. 

- 

From Equation 2: 

(1 - Pi) = exp( - w , P F )  (19a) 

W,  = e2"(1 + s ) ( l  - s ) ~  (19b) 

Here, w. is the  expected  number of offspring of a par- 



832 N. H. Barton 

ent who carries i deleterious allclcs, and also the favor- 
able  allele: only those  offspring  carlying thc favorable 
allele are  counted.  The  factor i 2U arises because we 
assume  that the  population is stable in size, so that  the 
absolute  mean fitness of the  population is 1. PF is the 
probability of fixation of a favorable allele in an individ- 
ual carrying ideleterious  mutations, given that  that indi- 
vidual passes on  one copy of the allele.  This is the  sum 
over the probability r,,k that  an individual in class i 
passes the allele to an  offipring in class I<:  

L 

p: = rjkl'/( (20)  
k=O 

P: is equivalent to I', , except  that i t  is measured  at a 
different  stage of the life  cycle. To find rj./t, assume that 
mutation  occurs  immediately  before  fertilization. The 
parent carries i deleterious alleles, each of which has 
probability ( of being passed on.  The offspring may 
also receive j ,  deleterious alleles derived by mutation 
in the first parent, j 2  derived by fresh  mutations  from 
the  second  parent,  and j.. inherited from the previous 
generation via the  second  parent. j ,  and j2 are  both 
Poisson distributed, with means U. j.. is Poisson distrib 
uted with mean ( U / S )  - U ,  because  it is drawn from 
the  distribution  among  gametes  after selection. Thus, j 
= ( j ,  + j2 + j 3 )  is Poisson distributed with mean ( U /  
S) + U. Combining  these  distributions, 

This simplifies to 

where I d k . , - k [  x ]  is the  generalized  Laguerre polynomial 
(WOLFRAM 1991 ) . Equations 19-21 define a set of si- 
multaneous  equations which can be solved numerically 
by setting P, to 0 above some  large i .  

Figure 10 gives result5 for a total  mutation  rate  per 
haploid  genome U = 0.5, with S = 0.1. This gives a 
Poisson distribution of the  number of deleterious al- 
leles (shaded  bars), with mean 2U/ S = 10. The  chance 
that an allele with advantage s = 0.01 will be fixed 
depends strongly on  the genetic  background in which it 
arises; taking the  range of backgrounds, which includes 
95% of the  population ( i = 5- 1.5 ) , the fixation proba- 
bility varies by a factor 7.32 (1'; = S.22s, P15 = 0.44s). 
The average fixation probability is reduced by a factor 
Il = 0.72. 

The single  locus analysis suggests that  mutations  at 
unlinked loci will reduce fixation probabilities by a fac- 

0 I l l  20 
No. o f  dcletcrlour mutations 

FIGURE IO.-The effect o f  deleterious  mutations with effect 
S = 0.1 at a large number of unlinked loci. The  net mutation 
rate per haploid genome is C' = 0.5. The unshaded bars give 
the fixation probability of an allele with advantage .< = 0.01,  
as a function of the  number of deleterious alleles with lvhich 
it is associated. This is measured relative to the vahle with no 
mutation, 0.0198 = 2s. The  shaded bars give the distribution 
of the  number of deleterious  mutations per diploid intlivitl- 
ual, which is Poisson with mean 2U/  s = 1 0 .  

tor (1  - 4yS),  independent of the advantage of the 
new allele (Equation 17c) .  If effects multiply across 
loci, as was found with  two loci (Table S ) ,  the  net 
reduction  should  be exp( -4US) for small p. For exam- 
ple, with U = 0.5, S = 0.1, fixation probability is reduced 
by a factor 0.720 for s = 0.01, and 0.742 for s = 0.4; 
exp( -4U S )  = 0.670. Figure 1 1  shows the  reduction in 
fixation probability for s = 0.01, S = 0.01, as a function 
of U (0). A logarithmic scale is used, so that  the multi- 
plicative prediction exp( -4US) should  appear  linear 
(dotted  line). Fixation probability does  decline a p  
proximately  geometrically with mutation  rate  for small 
U, but  the effect is weaker than  predicted  for  higher 
net  mutation rates. A much  better  approximation is 
that l7 = 1 / ( 1 + 4US) (solid curve),  an approximation 
that isjustified in the  next section by an  argument based 
on effective population size. 

PECK ( 1994, Table 1 ) gives simulation result5 for this 

: I , ,  e: , 
0. I 

0 0.5 I I .5 
U 

FIGLIRE  Il.-The reduction in fixation probability of an 
allele with advantage s = 0.01, due to mutation  at a large 
number of unlinked genes. Each mutation  decreases fitness 
by a factor ( 1 - S )  , with S = 0.1. Fixation probabilities are 
shown (0) , calculated numerically from Equations 19-21, 
truncating at an  upper limit of 25 deleterious  mutations  for 
U < 1, 35 for U = I ,  and 50 for U > 1. These  are  compared, 
on a log. scale, with formulae  extrapolated from Equation 
17b, assuming either multiplicative effects ( n  = exp (-4CK) ; 
dotted  line), or an effective population size that decreases 
inversely  with the variance in fitness [ n = f ( / N  = 1 / ( 1 + 
BUY) ; solid curve]. 
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model. However, he considers somewhat lower muta- 
tion rates, and weak selection, so that  the effect is weak. 
Simulations runs with stronger  mutation and selection 
agree with the exact calculations from Equation 21 
(J. R. PECK, personal communication) . 

GENERALIZATIONS 

Effective population size: A general  argument is that 
hitchhiking reduces the fixation probability simply by 
reducing  the effective population size. On a diffusion 
model,  the probability of fixation of a favorable allele 
is 2s( N e / N )  (CROW  and KIMURA 1970, p. 426), where 
Ne is defined in the diffusion limit by the cumulative 
variance in allele frequency produced by sampling drift, 
pq/2Ne=E(Sp2)/St(whereSp=p,+St-p,) . Inthe 
absence of natural selection, fluctuations Sp are caused 
by random segregation at meiosis and by random, non- 
heritable, variation in offspring number. However, if 
fitness is heritable, genetic markers will become acci- 
dentally associated with genetic backgrounds of  differ- 
ent selective value, thus causing fluctuations that persist 
over  several generations. To apply the diffusion limit, 
the interval St must be chosen to be short relative to 
the evolution of the favored allele, but  long  enough 
that fluctuations across different intervals are weakly 
correlated. 

ROBERTSON ( 1961 ) argued  that because associations 
with unlinked selected loci decay by half  every genera- 
tion,  the cumulative perturbation is  twice that in the 
initial generation,  and  the cumulative variance in allele 
frequency is four times that caused by noninherited 
variance in fitness.  If, as we assume here,  the  noninher- 
ited variation in offspring number follows a Poisson 
distribution, and the  population has constant size, ROE 
ERTSON'S (1961)  argument gives ( N /  Ne)  = [ 1 + 
2 var ( W) 1 ,  where var ( W) is the additive genetic vari- 
ance in the relative  fitness  of diploid individuals. 
Applying the same argument  to linked loci gives ( N /  
Ne) = [ l  + var(W)/(2r2)] .  The factor of l / r 2  a p  
pears because fluctuations in background fitness  persist 
for = r  generations. Robertson's argument is approxi- 
mate, because associations are affected by selection as 
well  as  by recombination. E. SANTIAGO and A. CABAL 
LERO (unpublished  data) give a  more detailed analysis; 
however,  this is based on a quantitative trait rather  than 
individual loci, and so is hard to apply here. The for- 
mula ( N / N e )  = [ 1 + var (W) / ( 2 P )  ] agrees with the 
reduction in fixation probability of  a weakly favored 
allele in the limit of loose linkage, for all the cases 
considered above: substitutions, fluctuating selection, 
and deleterious mutations (Equations 9b, 13b, and 
17d). It is plausible that  the effect of hitchhiking should 
be  determined by the effective population size in this 
limit, because fluctuations due to  chance associations 
with selected loci  persist for only a  short time ( r p s, 
S) , and so can be  treated as equivalent to simple genetic 
drift in a  population  of smaller effective  size. 

Averaging  over  the  genome: For each of the  three 
kinds of selection considered  here, we have derived 
approximations for  the  reduction in fixation probability 
due to  a single locus, when linkage is loose or tight. To 
find the net effect of  many loci, we must make some 
assumptions about how their effects combine. First, 
consider deleterious mutations. For unlinked deleteri- 
ous alleles ( r  = '/2 S S, s) , the argument based on 
effective population size predicts II = 1 / [ 1 + 
2 var ( W) 3 = 1 / ( 1 + 417s). This is shown by the solid 
curve in Figure 11 and is in better  agreement with the 
exchangeable model than  the multiplicative prediction 
(dotted  line). For two loci, agreement is also good for 
loose linkage, but is much poorer  than  the multiplica- 
tive prediction for tight linkage (Table 3 ) .  This sug- 
gests that  the effects of tightly linked loci combine 
multiplicatively, but  that loosely linked loci exert  their 
effect by increasing the genetic variance in fitness, and 
hence  reducing effective population size. This argu- 
ment is speculative; however, because the difference 
between the two alternative approximations is not  great, 
it is unlikely to lead to much error. We can extrapolate 
to find the net effect of mutations scattered over a ge- 
netic map of length R Morgans ( R  & l )  by taking the 
product of contributions from closely linked loci (as- 
sumed to act multiplicatively), and the contribution 
from the majority of loci, which are effectively unlinked 
( r = %), and act to reduce Ne. Division  of the genetic 
map onto several chromosomes should make little dif- 
ference provided that these are  not too short.  The effect 
of deleterious mutations scattered uniformly over a ge- 
nome of map length R is given by integrating Equation 
17c (assuming no double crossovers) : 

exp[ - =( 1 - h)] 

exp[ - ?( 1 - 3 1  
~ n =  

(1 + 4US) 
(6 5 1) (22b) 

For weakly favored  alleles ( s S, 0 1 ) , Equation 22b 
simplifies to exp (-2 U /  R )  / ( 1 + 4US) , which is the 
product of effects of closely linked loci (given solely by 
the mutation rate per unit  map  length, U /  R )  , and the 
effects of unlinked loci [given solely by 2 US = var ( W) , 
the genetic variance in  fitness caused by deleterious 
mutations]. This implies that as  in  classic load argu- 
ments, the  reduction in fixation probabilities due to 
closely linked mutations is independent of their selec- 
tive effect (provided S B s) . Unlinked loci  have an 
effect 1 / ( 1 + 4US) (Equation 22b)  and will  have the 
main effect if the  map is long and if most deleterious 
mutations have strong effects ( RS > 2 ) .  

It is harder to extend  the calculations for fluctuating 
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selection to many  loci. When the new allele is strongly 
favored (8 1 ) or when linkage is loose ( p 9 1 ) , the 
fixation probability is reduced by fluctuations at  a single 
locus by a factor [ 1 - var ( W) / 2 ( r + s) '1 (Equation 
13b)  ,just as for deleterious mutations ( Equation 17d ) . 
This similarity may be because linkage disequilibria per- 
sist for only = 1 / ( r + s) generations, so that all that 
matters in this limit is the  pattern of allele frequency 
change {var (W) = E [  2 ( d u /  dt )  '/ uv] 1, rather  than 
the ultimate fate of the alleles  involved. If this is so, the 
analogy  with deleterious mutations suggests that effects 
act through  a  reduction in Ne. 

At the opposite extreme, when linkage is tight and 
the new allele is weakly favored ( p,  8 G 1 ) , the fixation 
probability tends to the limit (2s) / E (  a'/ u + v*/ v )  , 
where % = E (  u) (Equation 12b). This formula can be 
derived by showing that  the probability of fixation of a 
weakly favored allele that arises  within a genetic back- 
ground with  average frequency % is E (  %/ u) , Thus, it 
extends to multiple alleles, or multiple genetic back- 
grounds with frequency ui , giving (2s) / E (X%:/ ut ) .  
Now, if one considers two loci  as defining four genetic 
backgrounds, labeled uo0,  u,,~, ul0, ull ,  the fixation 
probability is given by (2s) / E (  %:o/%o + I$,~/%~ + 
%:o/~lo + a:, /uI1 ) . Provided that these loci are in link- 
age equilibrium, so that uo0 = v l y ,  ull = ul%, etc., this 
equals ( 2 s ) / [ ~ ( % : / u ,  + $ / v l ) ~ ( a i / u ,  + $/*) I .  
Hence, effects are multiplicative  in the limit of tight 
linkage and s G S ,  as for tightly linked deleterious al- 
leles (Table 3) .  

To combine over loci, consider first a strongly favored 
allele (s 2 S) , in  which  case Equation 13b applies even 
with tight linkage. Integrating over a  long  map ( R  9 
1 ) , and  including  the effects of unlinked loci: 

Here, var (W) is the total additive variance in relative 
fitness caused by fluctuations at balanced polymor- 
phisms; it is assumed to be spread evenly  over the ge- 
nome. This formula suggests that weakly favored  alleles 
[ s 5 var ( W) / R] would be very unlikely to fix.  How- 
ever, Equation 13b breaks down in such cases, and ap- 
proaches the limiting value  given by Equation 12b. Let 
this limit be l7 = ( 1 - K) ; it is shown by the left-hand 
side of Figure 8. A  crude approximation is to splice 
Equations 12b and 13b where they  cross (see Figure 
8 ) .  This point is given by K = var (W) /2n(  r + s) *, 
where var ( W) / n is the average variance in  fitness due 
to one of the  n loci under balancing selection. It is the 
variance in fitness due to a single locus that matters 
here, because we are  finding  the points where two alter- 
native approximations to  the single-locus result meet. 
Integrating over the  genome, 

exp ( - d2Kn  var ( W) ) 
1 + 2var(W) 

R n =  (sG S )  (24) 

This suggests that  the cumulative effect  of fluctuating 
selection at many polymorphic loci could be substantial 
if many  loci are involved.  However, simulations would 
be desirable as a check on this extrapolation from single 
locus results. 

Finally, consider the effect of substitutions. These are 
qualitatively different from deleterious mutations or 
fluctuating selection, because successive substitutions 
can greatly reduce fixation probability. While  many  sub- 
stitutions might be in progress at any one time, most 
of these would be  at loosely linked loci, and would 
each have little effect. Integrating Equation 9b over the 
range where ( p + 8)  S 1 leads to Equation 23, var ( W) 
now being  the additive variance in fitness due to substi- 
tutions. Tightly linked loci  have the  dominant effect, 
and again, this can become very large when the new 
allele is  weakly favored (s G S) . We must therefore 
consider the limit where 8, p are  both small, and  the 
effect of a single substitution is equivalent to  a catas- 
trophe  that reduces numbers by w = 1 - O P  (Equa- 
tion 9b) . 

Since it is unlikely that  more  than  one substitution 
will be in progress within map distance r = S at any 
one time, their effect on a  rare allele can be considered 
as equivalent to a succession of catastrophes that re- 
duces its numbers by factors w l ,  %, w3, . . . , the ws 
depending  on rand S. BARTON ( 1994) shows that  the 
expected fixation probability is 

This formula neglects the additional factor 1 / [ 1 + 
2 var ( W) ] due to unlinked loci, because we expect this 
to be small. Note that  the ratio s/ S requires that  the 
equation be solved numerically for scfit; however, it only 
affects the threshold logarithmically. Equation 25 has 
the remarkable property that if the advantage of the 
rare allele is  less than  a critical value, proportional to 
the additive variance in relative  fitness per  unit  map 
length,  then it is extremely unlikely  to  fix in a large 
population. This is because each substitution reduces 
the frequency of the  rare allele, and a succession of 
hitchhiking events can outweigh a slight selective  advan- 
tage. Thus (barring the extremely unlikely  possibility 
that  the mutations arise in coupling), the weakly fa- 
vored allele is expected to decrease in frequency. The 
chance  that alleles  with advantages below the critical 
value will be fixed tends to 0 as population size in- 
creases; however, it may still be much  greater  than  the 
neutral value, P = 1 / 2N  (see BARTON 1994). 
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DISCUSSION 

The analogy with spatial structure: There is a close 
analogy between populations that  are divided into a 
variety  of genetic backgrounds and populations that 
are geographically subdivided. Both genetic and spatial 
heterogeneity limit the power  of natural selection, by 
reducing  the  chance  that a favorable mutation will be 
fixed. The degree of interference from other selected 
loci depends  on  the  random variation in fitness of an 
allele that finds itself in the various spatial locations or 
genetic backgrounds, relative to the rate of transfer 
between them by migration or recombination. If deme 
sizes and migration rates are  constant, fixation probabil- 
ity is not affected by subdivision of the population 
( ” A  1970) ; similarly, balanced polymorphisms 
have no effect if they remain at equilibrium (EWENS 
1967). However, if demes go extinct, and  are  then im- 
mediately recolonized, the fixation probability can be 
substantially reduced (LANDE 1985; TACHIDA and II- 
ZUKA 1991; BARTON 1993),  just as it can be reduced by 
substitutions at linked loci or by fluctuating polymor- 
phisms. Variations in population  structure may  have 
different effects on alleles under different kinds of se- 
lection. For example, if extinction is frequent relative 
to migration,  neutral variation is reduced  much less 
than is the fixation probability of favourable alleles 
(BARTON 1993) . 

The  general effect of  heritable variation in fit- 
ness: Regardless of what kind of selection is acting, 
loosely linked loci reduce fixation probability by a factor 
1 / [ 1 + var (W) / 2 r ‘ ] ,  where var (W) is the additive 
genetic variance in relative  fitness. This is because the 
transient fluctuations in allele frequency caused by in- 
herited variance in fitness act like uncorrelated “white 
noise,” and so simply reduce  the effective population 
size, Ne (ROBERTSON 1961 ) . The effect of unlinked loci 
( r  = 1/2) on both Ne and  on fixation probability de- 
pends solely on var ( w) . This may be substantial with 
artificial selection on a highly heritable trait: for exam- 
ple, if selection is based on a normally distributed trait 
with heritability 50% and  the largest tenth is selected, 
the heritable variance of  relative  fitness is 2.24. This 
would reduce  both fixation probability and neutral vari- 
ation by a factor of  0.149, assuming no linkage. I ignore 
here  the effect of noninherited fitness Variation,  which 
will further  reduce  the fixation probability. Selection 
that is based on the same fraction of the  population,  but 
that is spread over  many independent loci, contributes 
much less variance in fitness. Thus, if truncation selec- 
tion acts on 100 uncorrelated traits, each with heritabil- 
ity 50%, and if, as before,  one-tenth of the  population 
survives,  var ( W )  is only  0.37. The variance in fitness 
is greatest, for given  selective mortality, if truncation 
selection acts on some measure of genetic merit, as 
must be if load arguments  are to be evaded ( SVED et 
al. 1967). 

It is harder to assess the  heritable variance in fitness 
due to natural selection, even in laboratory populations. 
CHARLESWORTH ( 1987) suggests,  based on the decline 
in  viability and fertility caused by mutation accumula- 
tion,  that var ( W )  = 0.005. HOULE et al. (1992) use 
SVED’S (1971)  method,  in which  wild-type chrome 
somes are  competed against balancers, to measure the 
effects  of mutations on  net homozygous  fitness;  they 
estimate var ( W )  = 0.013. It is extremely hard to judge 
the total heritable variance in fitness, as opposed to the 
component  due  to deleterious mutations. CURTSINGER 
( 1990) passed Drosophila  melanogaster X chromosomes 
intact  through  the male line and  found  that  the relative 
fitnesses of 17 different X chromosomes ranged from 
0.63 to 1.28, with variance = 0.038 [Table 3, ignoring 
sampling error  and  (strong)  frequency-dependence] . 
K. FOWLER, C .  SEMPLE, N. H. BARTON and L. PARTRIDGE 
(unpublished  data) extend  the SVED ( 1971 ) technique 
to find the relative  fitness  of  wild-type chromosomes 
as heterozygotes against balancer chromosomes. They 
found  that this ranged from 0.41 to 1.70 across 12 third 
chromosomes, with variance 0.10. These estimates in- 
clude all sources of  fitness variance, which may explain 
why they are larger than those based on mutations 
alone. 

An upper  bound is set by the total variance in relative 
reproductive success (the “opportunity for selec- 
tion”). CLUTTON-BROCK (1988, Figure 29.1 and  29.2) 
reviews such measures across a variety  of species, and 
concludes that  the variance of relative fitness has a me- 
dian of  -1.5 for  both sexes. In principle, the heritable 
variance could be estimated from the lifetime reproduc- 
tive  success  of individuals of  known relationship: for 
example, family  sizes are  correlated across generations 
in humans ( HUESTIS and MAXWELL 1932). Though 
such correlations may be largely due  to maternal effects 
and cultural inheritance, they amplify random drift in 
much the same way as unlinked genetic variation. Fit- 
ness components more closely associated with  fitness tend 
to have  lower heritabilities, but only because they  have 
large environmental variances. When standardized rela- 
tive to the  mean,  their additive genetic variance is found 
to be no lower than for other metric traits (HOULE 
1992), suggesting that  the variance of fitness itself may 
be high. 

These empirical estimates do  not place strong 
bounds on the variance in  fitness: if mildly deleterious 
mutations are  the main source, var ( W) might be negli- 
gible ( = O . O l ) ,  whereas if a substantial fraction of the 
overall variance in reproductive success  is heritable (for 
example, because of a fluctuating environment), it 
could cause a substantial reduction in Ne and hence in 
fixation probability. A general  argument is that if sex 
is to be maintained despite its costs, then  the  heritable 
variance in fitness must be high. For example, coevolu- 
tion between  hosts and parasites must produce a s u b  
stantial variance in fitness to  produce a strong advan- 
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tage to modifiers that increase sex and recombination 
( HAMILTON et al. 1990) . Similarly, substantial additive 
genetic variance must exist if it is to be worthwhile for 
females to choose males that carry “good  genes” 
( CHARLESWORTH 1987) . 

Linked  loci: Deleterious mutations: Linked loci fur- 
ther reduce  the probability of fixation, below the ratio 
1 / [ 1 + 2 var (W) ] expected  from  the  heritable vari- 
ance  in fitness. Linked deleterious  mutations  reduce 
fixation probability by a  factor  that  depends on  the  net 
mutation  rate  per  unit  map  length, regardless of the 
selective effect: exp ( -2U/R) (s 4 S;  Equation 22b). 
For Drosophila, the  experiments of HOULE et al. ( 1992) 
suggest U > 0.25; the  map  length is R = 1.53 Morgans 
(averaged over the sexes, and allowing for sex linkage) 
( FINCHAM 1983, p. 114). Hence, linked deleterious mu- 
tations should  reduce fixation probability by a factor of 
at least exp ( -2U/ R )  = 0.72. More generally, classical 
load arguments  that assume multiplicative fitnesses re- 
quire U 5 1; because most sexually reproducing  higher 
organisms have more  recombination  than Drosophila, 
this implies a  minor effect of linked deleterious muta- 
tions. CHARLESWORTH et al. ( 1993) comes to a similar 
conclusion for  the effect of deleterious  mutations on 
neutral variability.  However, KONDRASHOV ( 1988) ar- 
gues that if deleterious  mutations have  synergistic  ef- 
fects, a  much  higher  mutation rate could be sustained 
( U = 10, say). If a substantial fraction of noncoding 
DNA  is functional, if the  number of coding  genes is 
larger  than in Drosophila (as in mammals), if many 
deleterious  mutations are  due to small insertions, dele- 
tions, etc. rather  than base substitutions, and if the Dro- 
sophila experiments miss minor  mutations,  then  the 
effect might  be significant. Even  if this is not usually so, 
linked  deleterious  mutations may substantially impede 
adaptation when recombination is restricted-for ex- 
ample,  in  predominantly selfing plants, or in regions of 
reduced crossing-over ( c$ AQUADRO and BEGUN 1993; 
CHARLESWORTH et al. 1993; PECK 1994) . 

Fluctuating selection: It is hard to combine  the effects 
of fluctuating selection across loci: the  approximation 
of Equation 24 needs to be checked against simulations. 
However,  it does suggest a substantial effect if additive 
genetic variance in fitness is due to fluctuations at many 
loci. Extreme fluctuations (for example,  generated by 
coevolution between host and  pathogen)  (HAMILTON 
et al. 1990) would be most effective, but any polymor- 
phism would be expected to fluctuate to some extent. 
If most amino-acid polymorphism is maintained by even 
moderate selection, then fixation probability could be 
very greatly reduced. For example,  suppose  that selec- 
tion varies sinusoidally with amplitude S lo-‘ at l o 4  
loci ( - 10% of genes in man or mouse) ( ANTEQUARA 
and BIRD 1994), causing allele frequencies  to vary be- 
tween 10 and 90%. The additive variance in fitness then 
averages  var ( W) = 0.39. This pattern gives a maximum 
reduction  for one locus with complete linkage of I”I = 

1 - K = 0.448; Equation 24 then predicts that averaged 
over the  genome, fixation probability is greatly reduced, 
by a factor 0.0027. If selection were  only S lop3  on 
each locus (c$ LANGLEY et al. 1981), then  the variance 
in fitness would  only be 0.0039, and fixation probability 
would be reduced by a  factor of only 0.551. 

Enzyme  heterozygosity is greater close to the highly 
polymorphic H-2 regon in mice ( NADEAU et al. 1983) , 
as is synonymous DNA sequence variation near  the F/ 
S polymorphism at  the Adh  locus of D. melanogaster 
(HUDSON et al. 1987). Thus, balancing selection can 
have a significant influence  on  linked loci. As argued 
above, an increase in neutral variability is not incompat- 
ible with a decrease in the probability of fixation of 
favorable alleles. The latter is not affected by a stable 
polymorphism, even though  neutral variability is in- 
creased. Conversely, fluctuations always reduce fixation 
probability (Equation l l a )  . However, their effect on 
neutral variability depends  on  the degree of linkage, 
relative to the time scale  of fluctuations. Tightly linked 
loci will show higher variability, whereas loosely linked 
loci  have  less neutral diversity ( c$ NADEAU and COLLINS 
1983; SVED 1983). 

Substitutions: The cumulative effect of substitutions 
differs qualitatively from that of deleterious  mutations 
or fluctuating polymorphisms. The latter  reduce fixa- 
tion probability by a  ratio which approaches some con- 
stant  for weakly selected alleles ( P  = 2sn, with II = 1 
as s/ S-+ 0 )  . In  contrast, successive substitutions make it 
very unlikely that alleles with  selective advantage below 
some threshold will be fixed. The critical advantage is 
proportional to the  heritable variance in fitness due to 
substitutions, per  unit  map  length  (Equation 25). It is 
hard to know  what  this  value might be. If one accepts 
HALDANE’S (1957) arguments on  the substitution load, 
then  the number of substitutions per  generation must 
be low ( A  < say). Assuming that most amino acid 
substitutions are adaptive gives a similar value for 
higher organisms ( GILLESPIE 1992, Table 1.4). If each 
new allele had (on average) S = 0.05, then  the variance 
in fitness would be 2XS = 0.0033. Spread over 10 M, 
this  gives the  threshold scfit = 0.85 X (Equa- 
tion 25) . 

The  role of weakly selected  alleles in evolution: Sev- 
eral questions must be distinguished. One might ask 
whether weakly selected alleles occur;  whether, when 
they occur, they are established because of their selec- 
tive advantage, or merely by chance;  whether they are 
unique,  or  recur; whether  a large fraction of the genetic 
differences between species are caused by selection on 
weakly selected variants; and whether  a significant frac- 
tion of adaptive differences are  due to variants with little 
effect  on fitness. The last question is the most  im- 
portant, because it concerns  the  genetic basis  of adapta- 
tion. If mean fitness increases as a result of selection 
between alleles with  very  small effects, then  hitchhiking 
could limit the  rate of advance of a large population. 
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It is not obvious that any very  weakly selected alleles 
should occur: one might imagine that  a discrete change 
from one amino acid to another would  necessarily cause 
an appreciable change in fitness. However, in metabolic 
pathways that involve  many  enzymes, the average influ- 
ence of one gene on the flux must be small ( KACSER 
and BURNS 1981 ) . HARTL et al. (1985) have extended 
this argument to show that selection may cause average 
activity to increase to  a level where further changes have 
extremely small  effects. The recent discovery that most 
genes can be  deleted without detectable effect on phe- 
notype ( TAUTZ 1992) is suggestive, but of course, “re- 
dundant” genes may still be subject to selection that is 
strong  on  an evolutionary time scale. In Escherichia coli 
( DEAN et al. 1988 ) , most randomly generated mutations 
had  no  detectable effect on fitness, implying selection 
of ~ 0 . 0 0 4 .  Differences between the distribution of  al- 
lele frequencies at silent and replacement sites in E. coli 
suggest selection, but only  of a l - 5  X lo-’ (SAWYER et 
al. 1987; HARTL 1989). Finally, null alleles are  found 
at  a frequency of a0.0025  at enzyme  loci in Drosophila. 
If there is a balance with mutation p 4 X selec- 
tion against null heterozygotes must average a1.6 X 

(LANGLEY et al. 1981 ) . One would expect amino- 
acid changes to have  even  weaker  effects. 

Selection does  not  act solely on amino acid sequence: 
changes between synonymous codons or in noncoding 
regions may be important in aggregate, but may  have 
very small individual effects. The best example of such 
variation comes from the bias in usage  of  synonymous 
codons. In E. coli, yeast, and Drosophila, this  bias is 
strongest in highly expressed genes; however,  this  pat- 
tern is not  found in mammals ( KIMURA 1981; BULMER 
1986; SHARP and LI 1986; SHIELDS et al. 1988) . The 
most  likely explanation is that translation is most  effi- 
cient when the most abundant tRNA is used; in large 
populations, selection can bias codon usage  in  highly 
expressed genes. By assuming that fitness is propor- 
tional to flux, BULMER ( 1991 ) calculated that selection 
of might act to bias codon usage  in a highly 
expressed gene such as an aminoacyl tRNA synthetase 
in E. coli. A  reduced bias in GC content in coding re- 
gions subject to reduced recombination suggests that 
hitchhiking  does  impede selection for  codon usage  bias 
( CHARLESWORTH 1994). It is not clear what fraction of 
selection can be accounted  for by variation in amino 
acid sequence; if noncoding regions are  important  then 
very  weakly selected alleles might matter. 

This example shows that mutations can cause  ex- 
tremely small differences in  fitness and yet  still be sub- 
ject to selection; these differences are small enough  for 
the mutations to be strongly influenced by hitchhiking. 
However, we have  still to discuss whether mutations of 
small effect make a significant contribution to adapta- 
tion. This is not quite the same as asking whether evolu- 
tion is “gradual”: two species might be connected by 
a  chain of phenotypically similar intermediates, yet  suc- 

cessive substitutions might be established by strong se- 
lection. There  are many examples of adaptations based 
on  one  or a few genes under strong selection and that 
have  evolved far  too quickly for very  weak selection 
coefficients to have been  important (BISHOP and COOK 
1981; ORR and COYNE 1992). Artificial selection has 
produced complex adaptations to domestication over 
hundreds of generations; and new species (notably, 
man) have adapted in as little as *lo5 generations. 
When sister taxa hybridize, the  shape of the clines that 
separate them can be used to estimate the  number  and 
effects  of the genes responsible for reproductive isola- 
tion. For example, isolation between the toads Bombina 
bombina and B. uariegata is based on =50 genes, each 
under selection of =lo-‘. There may  well be many 
genetic differences with much smaller effects, but these 
do  not contribute  a significant fraction of the isolation; 
moreover, selection of  less than would not have 
been effective during  the 3-4 million years for which 
these taxa  have been diverging ( SZYMURA and BARTON 
1991 ) . 

The  argument  here assumes that  adaptation is based 
on substitution; selection can cause a rapid change in 
the  mean of a polygenic character, even  when selection 
on each polygene is infinitesimally  small, because small 
changes at many  loci accumulate. However, my empha- 
sis  is on long-term evolution, which is likely to be based 
on substitutions, rather  than shifts in polymorphic fre- 
quencies. 

These arguments suggest that  the differences be- 
tween recent species have been established by moder- 
ately strong selection, and so cannot have been much 
impeded by hitchhiking. However, the basic molecular 
machinery has  evolved  over a much longer  period, in 
very large populations, and in organisms with little re- 
combination. Moreover, many molecular functions do 
not involve either  the genetic code or recognition of 
precise binding sites, and so may be under intrinsically 
weak selection. Thus, hitchhiking may  well  have been 
important in limiting the rate of molecular adaptation. 
For example, BULMER (1991 ) has  shown that  though 
selection for biased codon usage  in E. coli. is  weak 
( it should have produced  a much stronger 
bias than is actually observed. Similarly,  enzyme hetero- 
zygosity  is much lower than expected in many  species 
( 1983; GILLESPIE 1992). Such discrepancies 
could be accounted for either by severe reductions in 
numbers or by hitchhiking (MAYNARD SMITH and 
HAIGH 1974). J. MAYNARD SMITH (personal communi- 
cation ) has argued  that  it is most  unlikely that E. coli has 
been subject to sufficiently strong bottlenecks, favoring 
hitchhiking. However, he has  also pointed out that dif- 
ferent genotypes show  very high sequence divergence, 
which implies polymorphisms that  are  too old to be 
compatible with either  a bottleneck or hitchhiking ex- 
planation. 

Hitchhiking may also be  important in rapidly evolv- 
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ing populations, in  which the variance in fitness due  to 
substitutions becomes large: it is at  just such times that 
a  population would  most benefit from favorable alleles. 
Substitutions under even strong selection may then be 
impeded, setting an  upper limit on the rate of advance. 
The obvious example is  of a  population under artificial 
selection (HILL and ROBERTSON 1966; E. SANTIAGO and 
A. CABALLERO 1994), but  natural populations that live 
in (or move into) unpredictable environments might 
also  have a high genetic variance in  fitness. Indeed, 
many explanations of the evolution of  sex and recombi- 
nation  require  that this state be common (HAMILTON 
et al. 1990) . However, it is clear from this discussion 
that we need  a  great deal more information on the 
genetic basis of adaptation before we can know the 
extent to which linkage limits the power  of natural se- 
lection. 
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APPENDIX A APPROXIMATIONS FOR A SLIGHTLY 
FAVORABLE ALLELE (6’ < 1)  

When 8 is small, the average fixation probability grad- 
ually decreases during  the  period before a substitution, 
over a time scale T = 1 / e ,  and  then  returns rapidly 
toward 2s (e.g., 8 = s / S  = 0.001 in Figure 1A). This 
return occurs even  while the substituting allele is rare, 
so that a substitution has greatest effect when in  its  early 
stages ( u  < 0.01 for 8 = 0.001, say). This is because 
while P, is decreasing toward 2sp/ ( 1 + p )  , P,, is still 
extremely large, and is decreasing from 2s( 1 - p ) / 8 
for 8 6 1. The greatly increased probability of fixation 
of the new allele when coupled with U counterbalances 
the  reduced probability when coupled with V, provided 
u > 8. This pattern can be used to derive an approxi- 
mate solution for small 8. 

Equation 6a  shows that  the average fixation probabil- 
ity TI is reduced by the term 8uuA ‘. This term is negligi- 
ble for early times, so that all/ d T  = - On( 1 - ll ) . 
Thus: 

n =  W 

w + (1 - w )  exp(8T) 
for T 6  0 (Al)  

This has the same form as the fixation probability be- 
fore a catastrophe at T = 0, which reduces the  number 
of  alleles by a factor w (BARTON 1994). Numerical cal- 
culations show that l7 does indeed converge to this 
form for small 8. During the brief period when 8uvA2 
is significant, the term - ell( 1 - l7) can be  ignored, 
so that  the net change in l7 from w before T = 0 to 1 
afterward is 

K I ( O + )  - n(O-) = 1 - W =  8uuA2dT ( A 2 )  s:, 
To find an approximation for A, we splice together 
approximations for two regions: to the left, where u 4 
1, A = 1 / 8, and to the right, where u, A = 1, and 
where II can be approximated by 1 (see Figure 1A). 

For u 6 1, A 1: 

dA 
- =  d T  - A ( l  - p )  + 8A2 :. 
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X v ( r )  exp[p( T - 7 ) l  d r  (A3b) 

These  equations must be spliced together  in  the region 
w h e r e A e x p [ T ( l - p ) ] B l a n d u v * e x p ( T ) . T h e n ,  
both solutions are proportional to exp [ - T( 1 - p ) ] : 

a %  (1 - P )  exp[-T(1 - P ) 1  
A0 
nm 

Since 

1-rn rn exp[ T ( x  + I ) ]  
dT=-, 

7rx 

[1 + exp(T)12 sin ( r x )  

(1 - P )  sin(7rp) 
OTP 

A =  , 

The  dominant  contribution to the integral of 0uvA' in 
Equation A2  is in  the  region where Equation A3a  is 
valid. Hence 

l / ( l - P )  

The limit of Equation A5 when p is small  is much sim- 
pler and is  given by Equation 7. 

With fluctuating selection, ll is approximately con- 
stant when 0 is small (see Figure 7 ) .  Hence 

II( 1 - ll) = E(  UVA') (A6) 

From Equation 11, dropping  the  term 0A ( u - Y)  gives: 

" - A [ p  + (211 - l ) 0  + f ( u -   v ) ]  - f11 (A7) 
d T  

Integrating, and using du/  dT = fuv: 

x exp{[p + (211 - l ) O ] ( T -   7 ) J d r  (A8) 

This can be substituted into Equation A6 to give an 

equation  for II, which depends  on  the integral of (du/ 
dt) , averaged over a time scale p + (211- 1 ) 8. If [ p  + 
( 2 l "  1 ) 0 is large relative to the timescale of fluctua- 
tions in u,  Equation A8 simplifies to Equation 12a; Il 
is then  approximated by Equation 12a, an expression 
independent of p and 0. 

APPENDIX B: APPROXIMATIONS FOR LOOSE 
LINKAGE OR FOR A STRONGLY 
FAVORED ALLELE ( p + e s 1 ) 

Assume that  the fixation probability is not much re- 
duced, so that we can write l7 = 1 - E ,  and ignore 
terms of O (  E ) .  Then, from Equation  6 

dE 
d T  
- oE - euva2 (Bla)  

d a = A [ p + O + ( u - v ) ( l - O A ) ] - l   ( B l b )  
d T  

Equation Bla can be integrated explicitly, to give E in 
terms of 0uvA2: 

E (  T)  = e - @ ( T - T )  SF Ou(7) v(7)A2dT (B2) 

The  net effect can be found by integrating  Equation 
B2 again, and reversing the  order of integration with 
respect to T ,  r: 

rcy (1 - I I ) d T =  J:rn EdT = J:m uvA'dT (B3) 

If  we approximate  the term ( 1 - OA ) in Equation Blb 
by 1, on  the  grounds  that A will be small  with loose 
linkage or large 0, Equation Blb can be solved to give 
A (  T)  explicitly, in the same way  as for Equation A3b: 

x V ( T )  exp[(p + O ) ( T -  r ) ] d ~  (B4) 

X exp[-(p + 8 ) ( r  - T ) ] ~ T  dT Y 
= J:rn JT JT u( T)  v (  T )  

X exp[ - ( p  + 0 )  ( r l  + r2 - 2 T ) ]   d T ] d ~ ~ d T  (B5) 

Substituting for uv, changing variables to z = exp( T )  , 
xi = exp( ti) , and changing  the order of integration 
leads to 

cy rn u(r1) U ( 7 l )  U ( T 2 )  u(7-2) 



Limits to Natural  Selection 841 

JIrn ( 1  - r I ) d T =  
1 With fluctuating selection, the same arguments lead 

from Equation 11 to the analog of Equation B4: 

A ( T )  = 
1 

2 ( p  + e )  + ’ ( p  + 8 ) )  (B6) u ( T ) v ( T )  T + J f ( ~ ) u ( ~ )  v ( ~ )  

4 ( p  + e ) *  - 1 
X exp[(p + 8 ) ( T -  T ) ] ~ T  (B7)  

where + ’ (x )  is the second differential of log[T( x) 1 .  If ( p + e )  is large compared with the time  scale  over 
For large ( p  + e ) ,  this is close to the  much simpler which c changes, Equation B7 approximates to Equa- 
approximation of Equation 9. tion 13a. 


